NLRP3 gene

NLR family pyrin domain containing 3

Normal Function

The *NLRP3* gene (also known as *CIAS1*) provides instructions for making a protein called cryopyrin. Cryopyrin is a member of a family of proteins called nucleotide-binding domain and leucine-rich repeat containing (NLR) proteins, which are found in the fluid inside cells (cytoplasm). Cryopyrin is found mainly in white blood cells and in cartilage-forming cells (chondrocytes).

NLR proteins are involved in the immune system, helping to start and regulate the immune system's response to injury, toxins, or invasion by microorganisms. These proteins recognize specific molecules, become activated, and respond by helping to engage components of the immune system. Cryopyrin recognizes bacterial particles; chemicals such as asbestos, silica, and uric acid crystals; and compounds released by injured cells.

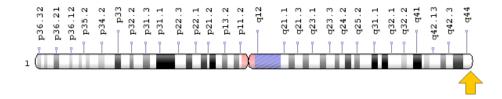
Once activated, groups of cryopyrin molecules assemble themselves along with other proteins into structures called inflammasomes, which are involved in the process of inflammation. Inflammation occurs when the immune system sends signaling molecules as well as white blood cells to a site of injury or disease to fight microbial invaders and facilitate tissue repair.

Health Conditions Related to Genetic Changes

familial cold autoinflammatory syndrome

Several mutations in the *NLRP3* gene have been identified in people with familial cold autoinflammatory syndrome. These mutations are in a region of the gene known as exon 3. Researchers believe that the mutations cause cryopyrin to be hyperactive, leading to episodes of fever and inflammation that are usually triggered by exposure to cold.

Muckle-Wells syndrome


At least 10 mutations in exon 3 of the *NLRP3* gene have been identified in people with Muckle-Wells syndrome. These mutations are believed to cause hyperactive cryopyrin, resulting in episodes of fever and inflammation, as well as the hearing loss and kidney problems that occur in Muckle-Wells syndrome.

neonatal onset multisystem inflammatory disease

About 30 mutations in the *NLRP3* gene have been identified in people with neonatal onset multisystem inflammatory disease (NOMID). Almost all of these mutations are found in exon 3. The mutations likely cause cryopyrin to be hyperactive, leading to an inappropriate inflammatory response that results in episodes of fever and widespread inflammatory damage to the body's cells and tissues. It is unclear why some mutations in exon 3 cause the severe symptoms of NOMID, some cause the less serious familial cold autoinflammatory syndrome, and others cause Muckle-Wells syndrome, which is intermediate in severity.

Chromosomal Location

Cytogenetic Location: 1q44, which is the long (q) arm of chromosome 1 at position 44 Molecular Location: base pairs 247,416,156 to 247,449,108 on chromosome 1 (Homo sapiens Annotation Release 108, GRCh38.p7) (NCBI)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

- AGTAVPRL
- AII
- AII/AVP
- AII/AVP receptor-like
- angiotensin/vasopressin receptor All/AVP-like
- AVP
- C1orf7
- CIAS1
- CLR1.1
- cryopyrin
- FCAS

- FCU
- FLJ95925
- MWS
- NACHT domain-, leucine-rich repeat-, and PYD-containing protein 3
- NACHT, LRR and PYD containing protein 3
- NALP3
- NALP3 HUMAN
- NLR family, pyrin domain containing 3
- nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain containing 3
- PYPAF1
- PYRIN-containing APAF1-like protein 1

Additional Information & Resources

Educational Resources

 Immunobiology (fifth edition, 2001): Innate Immunity https://www.ncbi.nlm.nih.gov/books/NBK10769/

Scientific Articles on PubMed

PubMed

https://www.ncbi.nlm.nih.gov/pubmed?term=%28NLRP3%5BTIAB%5D%29+OR+%28%28AII/AVP%5BTIAB%5D%29+OR+%28CIAS1%5BTIAB%5D%29+OR+%28cryopyrin%5BTIAB%5D%29+OR+%28FCAS%5BTIAB%5D%29+OR+%28FCU%5BTIAB%5D%29+OR+%28NALP3%5BTIAB%5D%29+OR+%28PYPAF1%5BTIAB%5D%29+OR+%28PYRIN-containing+APAF1-like+prote in+1%5BTIAB%5D%29%29+AND+%28%28Genes%5BMH%5D%29+OR+%28Genetic+Phenomena%5BMH%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+360+days%22%5Bdp%5D

OMIM

 NLR FAMILY, PYRIN DOMAIN-CONTAINING 3 http://omim.org/entry/606416

Research Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology http://atlasgeneticsoncology.org/Genes/GC NLRP3.html
- ClinVar https://www.ncbi.nlm.nih.gov/clinvar?term=NLRP3%5Bgene%5D
- HGNC Gene Family: NLR family http://www.genenames.org/cgi-bin/genefamilies/set/666
- HGNC Gene Family: Pyrin domain containing http://www.genenames.org/cgi-bin/genefamilies/set/994
- HGNC Gene Symbol Report http://www.genenames.org/cgi-bin/gene_symbol_report?q=data/ hgnc_data.php&hgnc_id=16400
- Infevers Mutation Registry http://fmf.igh.cnrs.fr/ISSAID/infevers/search.php?n=4
- NCBI Gene https://www.ncbi.nlm.nih.gov/gene/114548
- UniProt http://www.uniprot.org/uniprot/Q96P20

Sources for This Summary

- Aksentijevich I, D Putnam C, Remmers EF, Mueller JL, Le J, Kolodner RD, Moak Z, Chuang M, Austin F, Goldbach-Mansky R, Hoffman HM, Kastner DL. The clinical continuum of cryopyrinopathies: novel CIAS1 mutations in North American patients and a new cryopyrin model. Arthritis Rheum. 2007 Apr;56(4):1273-85.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17393462
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4321998/
- Church LD, Cook GP, McDermott MF. Primer: inflammasomes and interleukin 1beta in inflammatory disorders. Nat Clin Pract Rheumatol. 2008 Jan;4(1):34-42. doi: 10.1038/ncprheum0681. Review. Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18172447
- Farasat S, Aksentijevich I, Toro JR. Autoinflammatory diseases: clinical and genetic advances. Arch Dermatol. 2008 Mar;144(3):392-402. Review.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18347298
- Infevers Mutation Registry http://fmf.igh.cnrs.fr/ISSAID/infevers/search.php?n=4
- Mariathasan S, Weiss DS, Newton K, McBride J, O'Rourke K, Roose-Girma M, Lee WP, Weinrauch Y, Monack DM, Dixit VM. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature. 2006 Mar 9;440(7081):228-32. Epub 2006 Jan 11.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16407890
- OMIM: NLR FAMILY, PYRIN DOMAIN-CONTAINING 3 http://omim.org/entry/606416

- Sutterwala FS, Ogura Y, Szczepanik M, Lara-Tejero M, Lichtenberger GS, Grant EP, Bertin J, Coyle AJ, Galán JE, Askenase PW, Flavell RA. Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity. 2006 Mar;24(3):317-27.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16546100
- Touitou I, Lesage S, McDermott M, Cuisset L, Hoffman H, Dode C, Shoham N, Aganna E, Hugot JP, Wise C, Waterham H, Pugnere D, Demaille J, Sarrauste de Menthiere C. Infevers: an evolving mutation database for auto-inflammatory syndromes. Hum Mutat. 2004 Sep;24(3):194-8.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15300846
- Tunca M, Ozdogan H. Molecular and genetic characteristics of hereditary autoinflammatory diseases. Curr Drug Targets Inflamm Allergy. 2005 Feb;4(1):77-80. Review.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15720239

Reprinted from Genetics Home Reference: https://ghr.nlm.nih.gov/gene/NLRP3

Reviewed: September 2008 Published: March 21, 2017

Lister Hill National Center for Biomedical Communications U.S. National Library of Medicine National Institutes of Health Department of Health & Human Services